A Novel Robust Approach to Least Squares Problems with Bounded Data Uncertainties
نویسندگان
چکیده
In this correspondence, we introduce a minimax regret criteria to the least squares problems with bounded data uncertainties and solve it using semi-definite programming. We investigate a robust minimax least squares approach that minimizes a worst case difference regret. The regret is defined as the difference between a squared data error and the smallest attainable squared data error of a least squares estimator. We then propose a robust regularized least squares approach to the regularized least squares problem under data uncertainties by using a similar framework. We show that both unstructured and structured robust least squares problems and robust regularized least squares problem can be put in certain semi-definite programming forms. Through several simulations, we demonstrate the merits of the proposed algorithms with respect to the the well-known alternatives in the literature.
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملTitle A new robust kalman filter algorithm under outliers and system
This paper proposes a new robust Kalman filter algorithm under outliers and system uncertainties. The robust Kalman filter of Durovic and Kovacevic is extended to include unknown-but-bounded parameter uncertainties in the state or observation matrix. We first formulate the robust state estimation problem as an M-estimation problem, which leads to an unconstrained nonlinear optimization problem....
متن کاملROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH UNCERTAIN-BUT-BOUNDED ACTIVITY DURATIONS AND CASH FLOWS I. A NEW SAMPLING-BASED HYBRID PRIMARY-SECONDARY CRITERIA APPROACH
This paper, we presents a new primary-secondary-criteria scheduling model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations (UD) and cash flows (UC). The RCPSP-UD-UC approach producing a “robust” resource-feasible schedule immunized against uncertainties in the activity durations and which is on the sampling-based scenarios may be evaluated from a cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1203.4160 شماره
صفحات -
تاریخ انتشار 2012